Chapter 2: Logic and Languages

Notes

¢ “Bombing” or “Crashing” is when unexpected results occur in a program. This
may be the program halting and not responding, causing the system to stop
responding, or simply corrupting input, output, or data.

Computers are Smarter

In computery stuff, we have a hard drive and usually disks and
printers. The data on the hard drive stays there even after we shut off
power to it. We don't need to concern ourselves with how, just
familiarize yourself with the concept. Likewise a printed piece of paper
that contains data is permanent because it requires nothing except to
be untampered. The only way to lose data on a hard drive or printed
paper is to actively try to harm them.

In our machine, this simple program would most likely be fixed to the
hardware itself, and unchangable. As machines gain complexity, their
programs must be updated to extend their functionality or fix old
functionality. Personal computers use these kinds of software
programs.

Software programs are still instructions, but they exist on some kind
of storage rather than on the machine's logical hardware itself. These
are not already simply "known" by the machine, they must be loaded
and run. In the world of computing you know, these are executable
files on your personal computer.

When a software program is run, it is read by the machine using it's
brain, the CPU (microprocessor). It follows the instructions of the
program exactly. It stores what the program wants, retrieves what the
program wants, outputs what the program wants, and feeds the
program requested input. The CPU rarely denies requests and is
therefore a powerful, but dangerous thing.

So, there is another platform on which much of this logic can be run:
the operating system. The operating system is a software program
or programs that can run other programs that are written specifically
for it. When these higher level programs need access to the hardware
of the machine, they will ask the operating system rather than talking

to the hardware directly through the CPU. This is safer and because
the operating system has a lot of logic already, higher-level
programs can use that logic without writing more of their own.

What I will be teaching you to write are software programs to run on
modern operating systems running on modern computers. By
modern, I mean within the last couple decades or so ... I won't be
picky if you're using this (link to old Tandy from Art Bell here!)
computer.

Computers Don’t Speak Love

Everyone now and again hears or mentions the magical phrase
“universal language”. Let me tell you, computers don’t speak it. In
fact, if you thought there was a battle of the languages here in the real
world, wait until you get into the cyber realm! People already familiar
with that aspect of debate know what I'm talking about. What you’ll
find is that many people will defend their favorite language to the
death; worse than the crappy music they listen to!

But what am I talking about with languages? At any of several levels
in the computer’s logic there exists a language. The language is the
format of the logical instructions that comprise a program. In personal
computers, the very base language is that of the CPU itself and is
known as “machine language”. In fact, your computer itself knows
nothing other than this dismal language. The program with machine
language is it’s simplified beyond human comprehension. Every
instruction is broken down to very, very simple things so more of them
can be read into the CPU at once. It doesn’t have to do any parsing
(i.e. breaking the data into it’s logical and useful parts and then
processing it) on them at all. It would be the equivalent of instinct in
animals. They just know how to do some things, just like the CPU
knows how to read these instructions brainlessly and endlessly.

In the dark ages of computing, humans were slaves to computers and
were forced to write in machine language. Then came the first of the
translated languages: assembler. It was hardly a step up from
machine language, but I can actually put it in writing. For example, to
place the number 5 in one of the CPU’s registers (i.e. “brain cells”) you
could write:

Mov ax, 5

Since computers only really understand their machine language,
programs written in these languages had to be translated. No human
would want that job, let me tell you, so the instructions were fed into a
translator program whose instructions were already in machine
language. For assembler the process of translating is known as
“assembling” and the program used to do it simply as “assembler”.

Assembler is known as a low-level language because it is exactly like
machine language except mildly comprehensible. Later on, more
translated languages popped up but they were “higher-level” because
they were even more readable and less tied to the computer’s machine
language. This sparked the idea of portability ... you could take
instructions from Machine A and put them on Machine B and compile
them there into Machine B’s machine language. These early high-level
languages (such as "COBOL") were good points in history but they had
their short comings (they were the first, so this was inevitable). For
one thing, portability was really a myth. You could take instructions
from Machine A, then put them on Machine B, then pay someone to
modify them for all the special "syntax” Machine B used, then have it
compiled, then pay for repairs when it didnt work, etc. And they
seemed to think that broken English was a great architecture for a
“human readable” programming language.

I used some “new” terms there. One was “syntax”. It simply means
the rules of a language (or “features”, but those are inclusive to rules).
The latter was “programming language”. A high-level language is
known as a “programming language” for the simple reason that you
write in this foreign language for the purpose of programming.

The higher-level translated languages of which I have been speaking
and we will focus on are called “compiled languages”. C and C++ are
compiled languages. The term you figured was coming is “compiler”:
the program used to translate compiled languages into machine
language.

The fundamental thing you must realize here is that computers cannot
read or understand C++ without it first being translated. Another way
a computer read instructions from a high-level language is through
“interpretation” rather the “compilation”. The term “interpretation” is
used by languages whose instructions are read by a translator when
the program is to be run.

Viva La Existance

The instructions for any language exist in files. For high-level
languages these files are known as “source” files as they contain
“source code”. The terms “source” and “source code” are synonymous
... I suppose someone just got tired of saying “code” and dropped it
and no one really has noticed since. Source is actually just a way of
saying “instructions”. When I say "Here my C++ source”, what I
mean is “"Here are my instructions written in C++". For C++, these
files usually have one of the following extensions: “c”, “cpp”, “cxx”,
“h”, or “hpp”. T'll get into what each of them typically means later.

Most machine language exists in files as well. These are typically
referred to as “executable” files. They don’t have a larger salary than
other files, but the machine does understand them natively. These
files can be executed or “run” (not killed) natively by the machine. On
DOS/Windows machines, these files have the extension “exe”.

Your C++ source files are not executable ... though you would like
them to be. You cannot simply run them because the computer
doesn’t understand their language; it only knows the blasphemous
machine language. If you try to “run” a C++ source file on Microsoft
Windows, by say “double-clicking” it (a popular choice for many people
today - double clicking that is) ... it will either open the file using a
program (like Microsoft Visual C++, TextPad, etc.) or ask you what
you want to do with it. But it cannot run the file; it isn't executable.
Remember you must compile (translate) your C++ source files, and
therefore your C++ instructions, into machine code and an executable
file. More succinctly put, you must translate your source file into an
executable file.

Notice I said source files (plural). This is an understandability issue.
Usually programmers will keep their program’s source code in multiple
source files. This makes it easier to manage and change. These files
will all get compiled (remember that means translated) into a single
file of machine code. That is, of course, if they are for a single project.
You see, not all machine code is in a single file either. When you keep
those instructions in separate files you only have to change those files
to change that set of instructions. Did you think Windows was stored
in a single executable somewhere on your system that you could doink
with? No, it's stored in many, many files.

Not all executable files can be run directly. Some of them are sucked
in when other files are run. For example, DLL's (or SO’s if you're on a
Unices platform) are executable files but you cannot run them directly.

They need additional information to run that you cannot give them;
other programs must.

Other Things That Run ... or Crawl

Now, if you're fairly adept at operating a computer you might be
wondering about those other programs that you can “run”. Things like
command scripts, batch files, etc. These are instructions, no doubt
about it, and they are not machine language because usually you can
actually read (and edit) them with a text editor. The instructions in
these files is still translated just like C++ instructions are compiled and
Assembler instructions are assembled. The translation for these types
of files is known as “interpretation”. Yeah, it's a bit silly but it’s true.
The interpreter (program that translates interpreted languages) has all
the machine language at it's disposal that the interpreted language will
ever use. It reads the instructions, interprets them, executes some
machine language that equates to the instruction, and then moves on
to the next one. This all happens in “real time” and no executable file
is ever generated.

These languages are also sometimes called “scripting” languages.
They include the ever popular JavaScript, VisualBasic Script (VBA),
QBasic, and batch files.

The typical advantage of interpreted languages is that they’re easy to
understand, quick to write (since the interpreter usually knows a lot so
the programmer has to know less), and it is easier to write extremely
“dynamic” (ever-changing) things. The major disadvantage is speed,
followed by rules and portability. Since you are insulated from the
machine itself by the interpreter, you can make less mistakes but in
being further away your program is slower. High performance
programs are not typically written in script (a short-name for an
interpreted language). Many utilities, however, are and for good
reason.

Since this tutorial is meant to school you in C++, a compiled language,
I will not spend any more time on interpreted languages.

Interpreted Compiled Instructions

Yes, there is such a thing as instructions that are compiled into an
interpreted language. On very popular example is Java. The Java
source is written in a human-readable format. It is then compiled into
byte-code which is instructions for a “virtual machine” (fancy name for
an interpreter). The advantage of this is that the interpreter is much

faster because the format it must understand is much simpler (almost
machine-code like). The disadvantages are still basically the same as

an interpreted language; except now you have to worry about some
other things.

Again, I will speak no more of these byte-code languages as C++ is
not one of them. If you're interested in more information, see here: ...

	Chapter 2: Logic and Languages
	Notes

